Package: ROCket 1.0.1.9000

ROCket: Simple and Fast ROC Curves

A set of functions for receiver operating characteristic (ROC) curve estimation and area under the curve (AUC) calculation. All functions are designed to work with aggregated data; nevertheless, they can also handle raw samples. In 'ROCket', we distinguish two types of ROC curve representations: 1) parametric curves - the true positive rate (TPR) and the false positive rate (FPR) are functions of a parameter (the score), 2) functions - TPR is a function of FPR. There are several ROC curve estimation methods available. An introduction to the mathematical background of the implemented methods (and much more) can be found in de Zea Bermudez, Gonçalves, Oliveira & Subtil (2014) <https://www.ine.pt/revstat/pdf/rs140101.pdf> and Cai & Pepe (2004) <doi:10.1111/j.0006-341X.2004.00200.x>.

Authors:Daniel Lazar [aut, cre]

ROCket_1.0.1.9000.tar.gz
ROCket_1.0.1.9000.zip(r-4.5)ROCket_1.0.1.9000.zip(r-4.4)ROCket_1.0.1.9000.zip(r-4.3)
ROCket_1.0.1.9000.tgz(r-4.4-any)ROCket_1.0.1.9000.tgz(r-4.3-any)
ROCket_1.0.1.9000.tar.gz(r-4.5-noble)ROCket_1.0.1.9000.tar.gz(r-4.4-noble)
ROCket_1.0.1.9000.tgz(r-4.4-emscripten)ROCket_1.0.1.9000.tgz(r-4.3-emscripten)
ROCket.pdf |ROCket.html
ROCket/json (API)

# Install 'ROCket' in R:
install.packages('ROCket', repos = c('https://da-zar.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/da-zar/rocket/issues

On CRAN:

2.70 score 1 stars 6 scripts 189 downloads 7 exports 1 dependencies

Last updated 4 years agofrom:3f53a32379. Checks:OK: 5 NOTE: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 19 2024
R-4.5-winNOTENov 19 2024
R-4.5-linuxNOTENov 19 2024
R-4.4-winOKNov 19 2024
R-4.4-macOKNov 19 2024
R-4.3-winOKNov 19 2024
R-4.3-macOKNov 19 2024

Exports:aucmwu.testrkt_ecdfrkt_preprkt_rocshow_methodsvariance

Dependencies:data.table

Readme and manuals

Help Manual

Help pageTopics
Calculate the AUCauc auc.curve auc.function auc.rkt_roc
Mann-Whitney U testmwu.test
Empirical estimate of the CDFmean.rkt_ecdf plot.rkt_ecdf print.rkt_ecdf rkt_ecdf variance.rkt_ecdf
ROC pointsplot.rkt_prep print.rkt_prep rkt_prep
Empirical estimate of the ROCplot.rkt_roc print.rkt_roc rkt_roc
Available ROC estimation methodsshow_methods
Sample Variancevariance variance.default