Package: ROCket 1.0.1.9000
ROCket: Simple and Fast ROC Curves
A set of functions for receiver operating characteristic (ROC) curve estimation and area under the curve (AUC) calculation. All functions are designed to work with aggregated data; nevertheless, they can also handle raw samples. In 'ROCket', we distinguish two types of ROC curve representations: 1) parametric curves - the true positive rate (TPR) and the false positive rate (FPR) are functions of a parameter (the score), 2) functions - TPR is a function of FPR. There are several ROC curve estimation methods available. An introduction to the mathematical background of the implemented methods (and much more) can be found in de Zea Bermudez, Gonçalves, Oliveira & Subtil (2014) <https://www.ine.pt/revstat/pdf/rs140101.pdf> and Cai & Pepe (2004) <doi:10.1111/j.0006-341X.2004.00200.x>.
Authors:
ROCket_1.0.1.9000.tar.gz
ROCket_1.0.1.9000.zip(r-4.5)ROCket_1.0.1.9000.zip(r-4.4)ROCket_1.0.1.9000.zip(r-4.3)
ROCket_1.0.1.9000.tgz(r-4.4-any)ROCket_1.0.1.9000.tgz(r-4.3-any)
ROCket_1.0.1.9000.tar.gz(r-4.5-noble)ROCket_1.0.1.9000.tar.gz(r-4.4-noble)
ROCket_1.0.1.9000.tgz(r-4.4-emscripten)ROCket_1.0.1.9000.tgz(r-4.3-emscripten)
ROCket.pdf |ROCket.html✨
ROCket/json (API)
# Install 'ROCket' in R: |
install.packages('ROCket', repos = c('https://da-zar.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/da-zar/rocket/issues
Last updated 4 years agofrom:3f53a32379. Checks:OK: 5 NOTE: 2. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 19 2024 |
R-4.5-win | NOTE | Nov 19 2024 |
R-4.5-linux | NOTE | Nov 19 2024 |
R-4.4-win | OK | Nov 19 2024 |
R-4.4-mac | OK | Nov 19 2024 |
R-4.3-win | OK | Nov 19 2024 |
R-4.3-mac | OK | Nov 19 2024 |
Exports:aucmwu.testrkt_ecdfrkt_preprkt_rocshow_methodsvariance
Dependencies:data.table
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Calculate the AUC | auc auc.curve auc.function auc.rkt_roc |
Mann-Whitney U test | mwu.test |
Empirical estimate of the CDF | mean.rkt_ecdf plot.rkt_ecdf print.rkt_ecdf rkt_ecdf variance.rkt_ecdf |
ROC points | plot.rkt_prep print.rkt_prep rkt_prep |
Empirical estimate of the ROC | plot.rkt_roc print.rkt_roc rkt_roc |
Available ROC estimation methods | show_methods |
Sample Variance | variance variance.default |